An erythrocyte cytoskeleton-binding motif in exported Plasmodium falciparum proteins.

نویسندگان

  • Geoffrey K Kilili
  • Douglas J LaCount
چکیده

Binding of exported malaria parasite proteins to the host cell membrane and cytoskeleton contributes to the morphological, functional, and antigenic changes seen in Plasmodium falciparum-infected erythrocytes. One such exported protein that targets the erythrocyte cytoskeleton is the mature parasite-infected erythrocyte surface antigen (MESA), which interacts with the N-terminal 30-kDa domain of protein 4.1R via a 19-residue sequence. We report here that the MESA erythrocyte cytoskeleton-binding (MEC) domain is present in at least 13 other P. falciparum proteins predicted to be exported to the host cell. An alignment of the putative cytoskeleton-binding sequences revealed a conserved aspartic acid at the C terminus that was omitted from the originally reported binding domain. Mutagenesis experiments demonstrated that this aspartic acid was required for the optimal binding of MESA to inside-out vesicles (IOVs) prepared from erythrocytes. Using pulldown assays, we characterized the binding of fragments encoding the MEC domains from PFE0040c/MESA and six other proteins (PF10_0378, PFA0675w, PFB0925w, PFD0095c, PFF1510w, and PFI1790w) to IOVs. All seven proteins bound to IOVs, with MESA showing the strongest affinity in saturation binding experiments. We further examined the interaction of the MEC domain proteins with components of the erythrocyte cytoskeleton and showed that MESA, PF10_0378, and PFA0675w coprecipitated full-length 4.1R from lysates prepared from IOVs. These data demonstrated that the MEC motif is present and functional in at least six other P. falciparum proteins that are exported to the host cell cytoplasm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conserved domain targets exported PHISTb family proteins to the periphery of Plasmodium infected erythrocytes

During blood-stage infection, malaria parasites export numerous proteins to the host erythrocyte. The Poly-Helical Interspersed Sub-Telomeric (PHIST) proteins are an exported family that share a common 'PRESAN' domain, and include numerous members in Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi. In P. falciparum, PHIST proteins have been implicated in protein trafficking and ...

متن کامل

A Plasmodium falciparum Host-Targeting Motif Functions in Export during Blood Stage Infection of the Rodent Malarial Parasite Plasmodium berghei

Plasmodium falciparum (P. falciparum) secretes hundreds of proteins--including major virulence proteins--into the host erythrocyte. In order to reach the host cytoplasm, most P. falciparum proteins contain an N terminal host-targeting (HT) motif composed of 11 amino acids. In silico analyses have suggested that the HT motif is conserved throughout the Plasmodium species but experimental evidenc...

متن کامل

Functional Evaluation of Plasmodium Export Signals in Plasmodium berghei Suggests Multiple Modes of Protein Export

The erythrocytic stage development of malaria parasites occurs within the parasitophorous vacuole inside the infected-erythrocytes, and requires transport of several parasite-encoded proteins across the parasitophorous vacuole to several locations, including the cytosol and membrane of the infected cell. These proteins are called exported proteins; and a large number of such proteins have been ...

متن کامل

The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites

Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE) in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a l...

متن کامل

A Cluster of Ring Stage–specific Genes Linked to a Locus Implicated in Cytoadherence in Plasmodium falciparum Codes for PEXEL-negative and PEXEL-positive Proteins Exported into the Host Cell□D □V

Blood stages of Plasmodium falciparum export proteins into their erythrocyte host, thereby inducing extensive host cell modifications that become apparent after the first half of the asexual development cycle (ring stage). This is responsible for a major part of parasite virulence. Export of many parasite proteins depends on a sequence motif termed Plasmodium export element (PEXEL) or vacuolar ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eukaryotic cell

دوره 10 11  شماره 

صفحات  -

تاریخ انتشار 2011